1.5 相容性、收敛性与稳定性 1.5.1 相容性与收敛性 定义相容性。(非数学性质严格) 定义 1.5.1 相容性 当步长 \(h \to 0\) 时,差分方程是否无限逼近微分方程。 ...
1.5 相容性、收敛性与稳定性 1.5.1 相容性与收敛性 定义相容性。(非数学性质严格) 定义 1.5.1 相容性 当步长 \(h \to 0\) 时,差分方程是否无限逼近微分方程。 ...
3.2 五点差分格式 3.2.1 五点差分格式的建立 (1) 建立差分格式 将区间 \([a,b]\) 做 \(m\) 等分,记 \[h_1 = \frac{b-a}{m}, \quad ...
4.5 Crank-Nicolson 格式 本节对于定解问题 \((3.1.1) \sim (3.1.3)\) 建立一个具有 \(O(\tau^2 + h^2)\) 精度的无条件稳定的差分格式。 ...
2.2 差分格式 列出几个常用的数值微分公式。 引理 2.2.1 设 \(h>0\) 和 \(c\) 为常数 如果 \(g(x) \in C^2[c-h, c+h]\) ...
1.2 Euler 方法及其改进方法 1.2.1 Euler 方法 用 \(f(x_n, y_n)\) 代替式 \((1.2)\) 中的 \(\varphi_n\),得到差分方程初值问题: ...